Introduction
This is a list of 100 vision science paper compiled by Dr. Yury Petrov when he was at Northeastern University around 2007. The original link, however, is broken. Therefore I post the information in the original page here.
Dr. Yury Petrov’s selection criterion
I tried to weed out all review papers. Papers in the list have been ranked based on the number of times the paper was cited as given by Google Scholar, Scopus, and Web of Science databases as of January 2007. Google Scholar and Scopus numbers agree well, while Web of Science numbers are quite different. Apparently, the former two are biased toward more recent papers available online. Therefore, the highest of the two citation numbers (Google Scholar and Web of Science) determined the paper rank. I feel that the ranking provides a somewhat objective justification for the choice of the “most important” papers. As an alternative to the number of citations I also included the “Subjective score”, i.e. how many popular textbooks cited a given article on Sensation and Perception from the following list:
- Blake, R. and Seculer, R., Perception, 5-th edition, McGraw Hill Higher Education, (2006).
- Coren, S., Ward, L. M., and Enns, J. T., Sensation and Perception, 6-th edition, John Wiley & Sons, Inc., (2004).
- Goldstein, B., Sensation and Perception, 6-th edition, Wadsworth-Thomson Learning, (2002).
- Mater, G., Foundations of Perception, Psychology Press, (2006).
- Schiffman, H. R., Sensation and Perception, 5-th edition, John Wiley & Sons, Inc., (2001).
- Wolfe, J. M. et al., Sensation and Perception, Sinauer Associates, Inc., (2006).
- Wandell, B. A., Foundations of Vision, Sinauer Associates, Inc., (1995).
The Resource
I have collected almost all the papers in this list, but I failed to find about 5 of them. Click here to download the package[259.7MB]. I didn’t finish reading all of them. As far as I can remember, I should have finished 80%~85%.
The List
ID | Citation |
---|---|
1 | Hubel, D. H., Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. Lond. 160: 106-154. |
2 | Treisman, A. M., & Gelade, G. (1980) A feature integration theory of attention. Cognitive Psychology, 12, 97-136. |
3 | Hubel, D. H., Wiesel, T. N. (1968) Receptive fields and functional architecture of monkey striate cortex. J. Physiol. Lond. 195: 215-243. |
4 | Posner, M. I. (1980) Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25. |
5 | Marr, D. & Hildreth, E. (1980) Theory of edge detection. Proceedings of the Royal Society of London, 207B, 187-217. |
6 | Enroth-Cugell, C and Robson, J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol., 187(3): 517-552. |
7 | Hubel, D. H. and Wiesel, T. N. (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol, 28, 229-289. |
8 | Felleman, D.J., Van Essen, D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1): 1-47. |
9 | Gray, C. M., Konig, P., Engel, A. K., and Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334-337. |
10 | Shepard, R. N., & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science, 171(3972): 701-703. |
11 | Hubel, D. H. and Wiesel, T. N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol, 206(2):419-436. |
12 | Campbell FW, Robson JG. (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197(3):551-66. |
13 | Biederman, I. (1987) Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115-147. |
14 | Wong-Riley, M. T. T. (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171: 11-28. |
15 | Kuffler, S.W. (1953) Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37-68. |
16 | Livingstone, M.S., Hubel, D.H. (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853): 740-749. |
17 | Adelson E. H. & Bergen, J. R. (1985) Spatio-temporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284-299. |
18 | Blakemore, C. and Campbell, F. W. (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol., 203(1): 237-260. |
19 | Wiesel, T. N. and Hubel, D. H. (1963) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol, 26, 1003-1017. |
20 | Kanwisher, N., McDermott, J., Chun, M.M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11): 4302-4311. |
21 | Hubel, D. H. and Wiesel, T. N. (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol, 148, 574-591. |
22 | Eckhorn, et al. (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biological Cybernetics, 60(2): 121-130. |
23 | Duncan, J., Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychol Rev, 96(3): 433-58. |
24 | Goodale, M. A., & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20-25. |
25 | Nathans, J., Thomas, D., and Hogness, D. S. (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 232(4747): 193 - 202. |
26 | Koenderink, J.J. (1984) The structure of images. Biological Cybernetics, 50(5): 363-370. |
27 | Moran, J., & Desimone, R. (1985) Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715): 782-784. |
28 | Corbetta, M. et al. (1991) Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11(8): 2383-2402. |
29 | Barlow HB, Blakemore C, Pettigrew JD. (1967) The neural mechanism of binocular depth discrimination. J Physiol, 193(2):327-42. |
30 | Navon, D. (1977) Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383. |
31 | Olshausen, B. A. and Field, D. J. (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381: 607-609. |
32 | Livingstone, M.S., Hubel, D.H. (1984) Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4(1): 309-356. |
33 | Treisman, A., Gormican, S. (1988) Feature analysis in early vision: evidence from search asymmetries. Psychological review, 95(1): 15-48. Cited 542 times. |
34 | Belliveau, J. W., Kennedy, D. N., and McKinstry, R. C. (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032): 716 - 719. |
35 | Hubel, D. H. and Wiesel, T. N. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci, 278(961): 377-409. |
36 | Gray, C. M. and Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. PNAS, 86(5): 1698-1702. |
37 | Daugman J. G. (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A, 2(7): 1160-1169. |
38 | Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414-417. |
39 | Field D. J. (1987) Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A, 4, 2379-2394. |
40 | D. Marr, T. Poggio (1979) A Computational Theory of Human Stereo Vision. Proceedings of the Royal Society of London. Series B, Biological Sciences, 204(1156): 301-328. |
41 | Zeki, S. et al. (1991) A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3): 641-649. |
42 | Barlow, H. B. and Levick, W. R. (1965) The mechanism of directionally selective units in the rabbit’s retina. J. Physiol. 178: 477-504. |
43 | Sereno, M. I. et al. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 268(5212), 889-893. |
44 | Marr, D., & Nishihara, H. K. (1978) Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London, 200, 269-294. |
45 | Maunsell, J.H.R., Van Essen, D.C. (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology, 49(5): 1127-1147. |
46 | Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 35, 96-111. |
47 | Johansson, G. (1973) Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201-211. |
48 | Smith, V.C., Pokorny, J. (1975) Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15(2): 161-171. |
49 | Rensink, R.A., O’Regan, J.K., Clark, J.J. (1997) To see or not to see: The Need for Attention to Perceive Changes in Scenes. Psychological Science, 8(5): 368-373. |
50 | Watson, J. D. G. (1993) Area V5 of the Human Brain: Evidence from a Combined Study Using Positron Emission Tomography and Magnetic Resonance Imaging. Cerebral Cortex, 3, 79-94. |
51 | Thorpe, S., Fize, D., and Marlot, C. (1996) Speed of processing in the human visual system. Nature, 381, 520-522. |
52 | Bienenstock, E. L., Cooper, L. N., and Monro, P. W. (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neuroscience 2, 32-48. |
53 | Bell, A.J., Sejnowski, T.J. (1997) The ‘independent components’ of natural scenes are edge filters. Vision Research, 37(23): 3327-3338. |
54 | Boynton, G. M., Engel, S. A., Glover, G. H., and Heeger D. J. (1996) Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1. J. Neurosci. 16: 4207-4221. |
55 | Wolfe, J.M., Cave, K.R., Franzel, S.L. (1989) Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3): 419-433. |
56 | DeValois, R.L., Albrecht, D.G., Thorell, L.G. (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22(5): 545-559. |
57 | Julesz, B. (1981) Textons, the elements of texture perception, and their interactions. Nature, 290: 91-97. |
58 | Koch, C. and Ullman, S. (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 4(4): 219-227. |
59 | Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, 1-29. |
60 | Derrington, A. M., and Krauskopf, J., and Lennie, P. (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol, 357(1): 241-265. |
61 | Watson, A. B. and Ahumada A. J. (1985) Model of human visual-motion sensing. J Opt Soc Am A, 2(2): 322-341. |
62 | Newsome, W.T., Pare, E.B. (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6): 2201-2211. |
63 | Eriksen, C.W., St James, J.D. (1986) Visual attention within and around the field of focal attention: a zoom lens model. Perception and Psychophysics, 40(4): 225-240. |
64 | Desimone, R., Albright, T. D., Gross, C. G. and Bruce, C. (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4: 2051-2062. |
65 | Tootell, R.B.H. et al. (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4): 3215-3230. |
66 | Field D. J. (1994) What is the goal of sensory coding? Neural Computation, 6(4): 559-601. |
67 | Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R. (1993) A neural basis for visual search in inferior temporal cortex. Nature 363, 345-347. |
68 | Movshon, J.A., Adelson, E.H., Gizzi, M.S., and Newsome, W.T. (1985) The analysis of moving visual patterns. Study Week on Pattern Recognition Mechanisms (pp. 117-151) Pontificia Scademia Scientiarvm, V, Eds: Carlos Chagas, Ricardo Gattass, and Charles Gross, Rome: Vatican Press. |
69 | Adelson, E. H., & Movshon, J. A. (1982) Phenomenal coherence of moving visual patterns. Nature, 300, 523-525. |
70 | Meister, M., Wong R. O., Baylor, D.A., and Shatz C.J. (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252(5008): 939-943. |
71 | Marr, D., & Poggio, T. (1976) Cooperative computation of stereo disparity. Science, 194(4262): 283-287. |
72 | Field, D.J., Hayes, A., Hess, R.F. (1993) Contour integration by the human visual system: Evidence for a local ‘association field’. Vision Research, 33(2): 173-193. |
73 | Heinze, H. J. et al. (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372(6506): 543-546. |
74 | Heeger, D. J. (1992) Normalization of cell responses in cat striate cortex. Vis. Neurosci., 9(2): 181-197. |
75 | Luck, S. J., Chelazzi, L., Hillyard, S. A., and Desimone, R. (1997) Neural Mechanisms of Spatial Selective Attention in Areas V1, V2, and V4 of Macaque Visual Cortex. J Neurophysiol, 77(1): 24-42. |
76 | Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neuroscience, 12, 4745-4765. |
77 | Treue, S. and Maunsell, J. H. R. (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382: 539-541. |
78 | Knierim, J.J., Van Essen, D.C. (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67(4): 961-980. |
79 | Barlow, H. B. (1972) Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1, 371-394. |
80 | Jones, J. P. and Palmer, L. A. (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol, 58(6) 1233-1258. |
81 | Olshausen, B. A. and Field, D. J. (1997) Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37, 3311-3325. |
82 | Corbetta, M. et al. (1998) A common network of functional areas for attention and eye movements. Neuron, 21(4): 761-773. |
83 | Malik, J. and Perona, P. (1990) Preattentive texture discrimination with early vision mechanisms. J Opt Soc Am A, 7, 923-932. |
84 | Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001) Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention. Science, 291(5508): 1560 - 1563. |
85 | Malach, R. et al. (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. PNAS, 92: 8135-8139. |
86 | Kapadia, M.K., It:o, M., Gilbert, C.D., Westheimer, G. (1995) Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4): 843-856. |
87 | DeYoe E. A. et al. (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS, 93, 2382-2386. |
88 | Kastner, S. et al. (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4): 751-761. |
89 | Leopold, D. A. and Logothetis, N. K. (1996) Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature, 379: 549-553. |
90 | Hopfinger, J.B., Buonocore, M.H., Mangun, G.R. (2000) The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3): 284-291. |
91 | Engel, S. A., Glover, G. H., and Wandell, B. A. (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7, 181-192. |
92 | Atick, J. J. (1992) Could information theory provide an ecological theory of sensory processing? Network: Comp. in Neural Sys., 3(2): 213-251. |
93 | Daugman, J. G. (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res, 20(10): 847-856 |
94 | Olshausen, B. A. et al., Anderson, C. H., and Van Essen, D. C. (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neuroscience, 13, 4700-4719. |
95 | Reichardt, W. (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W. A. Rosenblith (Ed.), Sensory Communication, 303-317. Cambridge, MA: MIT Press. |
96 | Ullman, S. (1984) Visual Routines. Cognition, 18, 97-159. |
97 | Maloney, L. T. and Wandell, B. A. (1986) Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am A, 3(1): 29-33. |
98 | van Hateren, J. H. (1998) Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society B: Biological Sciences, 265(1394): 359-366. |
99 | Itti, L. and Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40(10-12):1489-1506. |
100 | Gottlieb, J., Kusunoki, M. and Goldberg, M. E. (1998) The representation of visual salience in monkey parietal cortex. Nature 391: 481-484. |